THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Реальный контур состоит из катушки индуктивности и конденсатора. Реальная катушка не может считаться только индуктивностью, которая накапливает магнитную энергию. Во-первых, провод обладает конечной проводимостью, во-вторых, между витками накапливается электрическая энергия, т.е. имеет место межвитковая ёмкость. То же самое можно сказать и о емкости. Реальная емкость помимо самой емкости будет иметь в своем составе индуктивности выводов и сопротивление потерь.

Для упрощения задачи рассмотрим модель реального колебательного контура с катушкой индуктивности состоящей всего из двух витков.

Эквивалентная схема будет иметь вид, приведённый на рисунке на рис. 4. ( и - индуктивность и сопротивление одного витка, - межвитковая ёмкость).

Однако, как показывает опыт радиоинженера, в большинстве случаев нет необходимости эту сложную схему.

Уравнение для электрической цепи, изображенной на рис. 5 получим на основе закона Кирхгофа. Используем второе правило: сумма падений напряжений на элементах контура равна алгебраической сумме внешних ЭДС, включенных в этот контур. В нашем случае ЭДС равна нулю, и получим:

Разделим слагаемые на и обозначим

Уравнение для идеального контура примет вид:

Имея модели двух динамических систем, можно уже сделать некоторые выводы.

Простое сравнение уравнений (В.6) и (В.9) показывает, что маятник при малых отклонениях и идеальный контур описываются одним и тем же уравнением, известным как уравнение гармонического осциллятора, которое в стандартной форме имеет вид:

Следовательно, и маятник, и контур как колебательные системы обладают одинаковыми свойствами. Это и есть проявление единства колебательных систем.

Имея эти модели, уравнения, их описывающие, и обобщая полученные результаты, дадим классификацию динамических систем по виду дифференциального уравнения. Системы бывают линейные и нелинейные.

Линейные системы описываются линейными уравнениями (см. (В.11) и (В.15)). Нелинейные системы описываются нелинейными уравнениями (например, уравнение математического маятника (В.9)).

Другим признаком классификации является число степеней свободы . Формальным признаком служит порядок дифференциального уравнения, описывающего движение в системе. Система с одной степенью свободы описывается уравнением 2-го порядка (или двумя уравнениями первого порядка); система с N степенями свободы описывается уравнением или системой уравнений порядка 2N.

В зависимости от того как изменяется энергия колебательного движения в системе, все системы делятся на два класса: консервативные системы – те, у которых энергия остаётся неизменной, и неконсервативные системы – те, у которых энергия изменяется с течением времени. В системе с потерями энергия убывает, однако возможны случаи, когда энергия возрастает. Такие системы называются активными.

Динамическая система может подвергаться и не подвергаться внешнему воздействию. В зависимости от этого различают четыре типа движения.

1.Собственные, или свободные колебания, системы. В этом случае от внешнего источника система получает конечный запас энергии и источник отключается. Движение системы при конечном начальном запасе энергии и представляет собственные колебания.

2.Вынужденные колебания. Система находится под действием внешнего периодического источника. Источник оказывает «силовое» воздействие, т.е. природа источника та же, что и у динамической системы (в механической системе – источник силы, в электрической – ЭДС и т.д.). Колебания обусловленные внешним источником, называются вынужденными. При отключении они исчезают.

3.Параметрические колебания наблюдаются в системах, у которых периодически во времени изменяется какой-либо параметр, например, ёмкость в контуре или длина маятника. Природа внешнего источника который, изменяет параметр, может отличаться от природы самой системы. Например, ёмкость можно изменять механически.

Нужно отметить, что строгое разделение вынужденных и параметрических колебаний возможно лишь для линейных систем.

4.Особый вид движения – автоколебания. Термин впервые введён академиком Андроновым. Автоколебание – это периодическое колебание, период, форма и амплитуда которого зависят от внутреннего состояния системы и не зависят от начальных условий. С энергетической точки зрения автоколебательные системы являются преобразователями энергии некоторого источника в энергию периодических колебаний.


Глава 1.СОБСТВЕННЫЕ КОЛЕБАНИЯ В ЛИНЕЙНОЙ КОНСЕРВАТИВНОЙ СИСТЕМЕ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ (ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР)

Уравнение такой системы имеет вид:

(примерами могут служить математический маятник при малых углах отклонения и идеальный колебательный контур). Решим уравнение (1.1) подробно, пользуясь классическим методом Эйлера. Ищем частное решение в виде:

где и – постоянные, пока неизвестные константы. Подставим (1.2) в уравнение (1.1)

Разделим обе части уравнения на и получим алгебраическое, так называемое характеристическое, уравнение:

Корни этого уравнения

где – мнимая единица. Корни мнимые и комплексно-сопряжённые.

Как известно, общее решение есть сумма частных, т.е.

Мы полагаем, что есть действительная величина. Чтобы это выполнялось, постоянные и должны быть комплексно сопряженными, т.е.

Две постоянные и определяются из двух начальных условий:

Решение в форме (1.8) преимущественно используется в теории; для прикладных задач оно не удобно, так как и не измеряются. Перейдём к форме решения, которое наиболее употребительно на практике. Представим комплексные постоянные в полярной форме:

Подставим их в (1.8) и воспользуемся формулой Эйлера

где - амплитуда колебаний, - начальная фаза.

И определяются из начальных условий. Заметим, что начальная фаза зависит от начала отсчёта во времени. Действительно, постоянную можно представить в виде:

Если начало отсчёта во времени совпадает с , начальная фаза равна нулю. Для гармонического колебания сдвиг по фазе и сдвиг во времени эквивалентны.

Разложим косинус в (1.13) на косинусоидальную и синусоидальную составляющие. Получим ещё одно представление:

Если и известны, то нетрудно найти амплитуду и фазу колебания, используя следующие соотношения:

Все три формы записи (1.8, 1.12, 1.15) эквивалентны. Использование конкретной формы определяется удобством рассмотрения конкретной задачи.

Анализируя решение, можно сказать , что собственные колебания гармонического осциллятора есть гармоническое колебание, частота которого зависит от параметров системы и не зависит от начальных условий; от начальных условий зависят амплитуда и начальная фаза.

Независимость от начальных условий частоты (периода) собственных колебаний называется изохорностью .

Рассмотрим энергию гармонического осциллятора на примере колебательного контура. Уравнение движения в контуре

Умножим слагаемые этого уравнения на :

После преобразования его можно представить в виде:

Найдем закон изменения энергии в конденсаторе. Ток в емкостной ветви можно найти используя следующее выражение

Подставив (1.28) в формулу для нахождения электрической энергии получим закон изменения электрической энергии на конденсаторе


Таким образом, энергия в каждом элементе контура колеблется с удвоенной частотой. График этих колебаний приведен на рис. 6.

В начальный момент времени вся энергия сосредоточена в емкости, магнитная энергия ровна нулю. По мере разряда емкости через индуктивность электрическая энергия из емкости переходит в магнитную энергию индуктивности. Через четверть периода вся энергия сосредотачивается в индуктивности, т.е. емкость полностью разрядилась. Затем этот процесс периодически повторяется.

Таким образом, колебание в идеальном контуре – это переход электрической энергии в магнитную и обратно, периодически повторяющийся во времени.

Этот вывод справедлив для любых электромагнитных колебательных систем, в частности для объемных резонаторов, где магнитная и электрическая энергия пространственно не разделены.

Обобщая этот результат, можно утверждать, что колебательный процесс в линейной консервативной системе – это периодический переход энергии одного типа в другой. Так, при колебаниях маятника кинетическая энергия переходит в потенциальную и наоборот.

На рисунке представлен график функции распределения молекул кислорода по скоростям (распределение Максвелла) для температуры Т=273 К, при скорости функция достигает максимума. Здесь плотность вероятности или доля молекул, скорости которых заключены в интервале скоростей от до в расчете на единицу этого интервала. Для распределения Максвелла справедливы утверждения, что …

Укажите не менее двух вариантов ответа

Площадь заштрихованной полоски равна доле молекул со скоростями в интервале от до или вероятности того, что скорость молекулы имеет значение в этом интервале скоростей

С ростом температуры наиболее вероятная скорость молекул увеличится

Задание
Кинетическая энергия вращательного движения всех молекул в 2 г водорода при температуре 100 К равна …

КПД цикла Карно равен 40%. Если на 20% увеличить температуру нагревателя и на 20% уменьшить температуру охладителя, КПД (в %) достигнет значения …

На -диаграмме изображены два циклических процесса Отношение работ , совершенных в этих циклах, равно ….

Чтобы расплавить некоторую массу меди, требуется большее количество теплоты, чем для плавления такой же массы цинка, так как удельная теплота плавления меди в 1,5 раза больше, чем цинка ( Дж/кг, Дж/кг). Температура плавления меди примерно в 2 раза выше температуры плавления цинка ( , ). Разрушение кристаллической решетки металла при плавлении приводит к возрастанию энтропии. Если энтропия цинка увеличилась на , то изменение энтропии меди составит …

Ответ: ¾ DS

Зависимость давления идеального газа во внешнем однородном поле силы тяжести от высоты для двух разных температур () представлена на рисунке …

Из предложенных ниже идеальных газов выберите те, для которых отношение молярных теплоемкостей равно (колебаниями атомов внутри молекулы пренебречь).

Кислород

На диаграмме изображен цикл Карно для идеального газа.

Для величины работы адиабатического расширения газа и адиабатического сжатия справедливо соотношение …

На рисунке представлен график функции распределения молекул идеального газа по скоростям (распределение Максвелла), где – доля молекул, скорости которых заключены в интервале скоростей от до в расчете на единицу этого интервала.

Для этой функции является верным утверждение, что …

при изменении температуры площадь под кривой не изменяется

На рисунке изображен цикл Карно в координатах (T, S), где S – энтропия. Адиабатное расширение происходит на этапе …


Идеальный газ переводится из первого состояния во второе двумя способами ( и ), как показано на рисунке. Теплота, полученная газом, изменение внутренней энергии и работа газа при переходе его из одного состояния в другое связаны соотношениями …

Диаграмма циклического процесса идеального одноатомного газа представлена на рисунке. Работа газа в килоджоулях в циклическом процессе равна …

Формула Больцмана характеризует распределение частиц, находящихся в состоянии хаотического теплового движения, в потенциальном силовом поле, в частности распределение молекул по высоте в изотермической атмосфере. Соотнесите рисунки и соответствующие им утверждения.

1. Распределение молекул в силовом поле при очень высокой температуре, когда энергия хаотического теплового движения значительно превосходит потенциальную энергию молекул.

2. Распределение молекул не является больцмановским и описывается функцией .

3. Распределение молекул воздуха в атмосфере Земли.

4. Распределение молекул в силовом поле при температуре .

Одноатомному идеальному газу в результате изобарического процесса подведено количество теплоты . На увеличение внутренней энергии газа
расходуется часть теплоты , равная (в процентах) …

Адиабатному расширению газа ( давление, объем , температура, энтропия) соответствует диаграмма …

Молярная теплоемкость идеального газа при постоянном давлении равна где – универсальная газовая постоянная. Число вращательных степеней свободы молекулы равно …

Зависимость концентрации молекул идеального газа во внешнем однородном поле силы тяжести от высоты для двух разных температур () представлена на рисунке …

Если не учитывать колебательные движения в линейной молекуле углекислого газа (см. рис.), то отношение кинетической энергии вращательного движения к полной кинетической энергии молекулы равно …

Холодильнику, увеличится в два раза, то коэффициент полезного действия тепловой машины …

уменьшится на

Средняя кинетическая энергия молекул газа при температуре зависит от их конфигурации и структуры, что связано с возможностью различных видов движения атомов в молекуле и самой молекулы. При условии, что имеет место только поступательное и вращательное движение молекулы как целого, средняя кинетическая энергия молекул азота равна …

Если количество теплоты, отдаваемое рабочим телом холодильнику, увеличится в два раза, то коэффициент полезного действия тепловой машины

Если не учитывать колебательные движения в молекуле углекислого газа, то средняя кинетическая энергия молекулы равна …

Решение: Средняя кинетическая энергия молекулы равна: , где – постоянная Больцмана, – термодинамическая температура; – сумма числа поступательных, вращательных и удвоенного числа колебательных степеней свободы молекулы: . Для молекулы углекислого газа число степеней свободы поступательного движения , вращательного – , колебательного – , поэтому Следовательно, средняя кинетическая энергия молекулы равна: .

ЗАДАНИЕ N 2 Тема: Первое начало термодинамики. Работа при изопроцессах

На рисунке представлена диаграмма циклического процесса идеального одноатомного газа: За цикл газ получает количество теплоты (в ), равное …

Решение: Цикл состоит из изохорного нагревания (4–1), изобарного расширения (1–2), изохорного охлаждения (2–3) и изобарного сжатия (3–4). На первых двух этапах цикла газ получает теплоту. Согласно первому началу термодинамики, количество теплоты, получаемое газом, равно , где – изменение внутренней энергии, – работа газа. Тогда . Таким образом, количество теплоты, получаемое газом за цикл, равно

ЗАДАНИЕ N 3 Тема: Второе начало термодинамики. Энтропия

В ходе необратимого процесса при поступлении в неизолированную термодинамическую систему тепла для приращения энтропии верным будет соотношение …

Решение: Отношение в обратимом процессе есть полный дифференциал функции состояния системы, называемой энтропией системы: . В изолированных системах энтропия не может убывать при любых, происходящих в ней процессах: . Знак равенства относится к обратимым процессам, а знак «больше» – к необратимым процессам. Если в неизолированную систему поступает тепло и происходит необратимый процесс, то энтропия возрастает за счет не только полученного тепла, но и необратимости процесса: .

Задание n 4 Тема: Распределения Максвелла и Больцмана

На рисунке представлен график функции распределения молекул идеального газа по скоростям (распределение Максвелла), где – доля молекул, скорости которых заключены в интервале скоростей от до в расчете на единицу этого интервала: Для этой функции верными являются утверждения …

положение максимума кривой зависит не только от температуры, но и от природы газа (его молярной массы)

при увеличении числа молекул площадь под кривой не изменяется

с ростом температуры газа значение максимума функции увеличивается

для газа с бόльшей молярной массой (при той же температуре) максимум функции расположен в области бόльших скоростей

Решение: Из определения функции распределения Максвелла следует, что выражение определяет долю молекул, скорости которых заключены в интервале скоростей от до (на графике это – площадь заштрихованной полоски). Тогда площадь под кривой равна и не изменяется при изменении температуры и числа молекул газа. Из формулы наиболее вероятной скорости (при которой функция максимальна) следует, чтопрямо пропорциональна и обратно пропорциональна , где и – температура и молярная масса газа соответственно.

ЗАДАНИЕ N 5 Тема: Электростатическое поле в вакууме

На рисунках представлены графики зависимости напряженности поля для различных распределений заряда: График зависимости для шара радиуса R , равномерно заряженного по объему, показан на рисунке …

ЗАДАНИЕ N 6 Тема: Законы постоянного тока

На рисунке представлена зависимость плотности тока j , протекающего в проводниках 1 и 2, от напряженности электрического поля Е : Отношение удельных сопротивлений r 1 /r 2 этих проводников равно …

ЗАДАНИЕ N 7 Тема: Магнитостатика

Рамка с током с магнитным дипольным моментом , направление которого указано на рисунке, находится в однородном магнитном поле: Момент сил, действующих на магнитный диполь, направлен …

перпендикулярно плоскости рисунка к нам

перпендикулярно плоскости рисунка от нас

по направлению вектора магнитной индукции

противоположно вектору магнитной индукции

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама