THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Кроме рассмотренных выше операций, мы будем употреблять еще две новые операции, связанные с особенностями логики предикатов. Операции эти выражают собой утверждения общности и существования.

Квантор - некоторый способ приписать наличие каких-либо свойств целому множеству объектов: (квантор общности) или просто (), (квантор существования).

1. Квантор общности. Пусть R (x) - вполне определенный предикат, принимающий значение И или Л для каждого элемента х некоторого поля М. Тогда под выражением (x)R(x) мы будем подразумевать высказывание истинное, когда R(х) истинно для каждого элемента х поля М, и ложное в противном случае. Это высказывание уже не зависит от х. Соответствующее ему словесное выражение будет: «для всякого х R (х) истинно».

Пусть теперь И(х)-формула логики предикатов, принимающая определенное значение, если входящие в нее переменные предметы и переменные предикаты замещены вполне определенным образом. Формула И(х) может содержать и другие переменные, кроме х. Тогда выражение И(х) при замещении всех переменных как предметов, так и предикатов, кроме х, представляет собой конкретный предикат, зависящий только от х. А формула (х)И(х) становится вполне определенным высказыванием. Следовательно, эта формула вполне определяется заданием значений всех переменных, кроме х, и, значит, от х не зависит. Символ (х) называется квантором общности .

2. Квантор существования. Пусть R(х) - некоторый предикат. Мы свяжем с ним формулу (x)R(x), определив ее значение как истину, если существует элемент поля М, для которого R(х) истинно, и как ложь в противном случае. Тогда если И(х) - определенная формула логики предикатов, то формула (x)И(x) также определена и от значения х не зависит. Знак (x) называется квантором существования .

Кванторы (х) и (х) называются двойственными друг другу.

Мы будем говорить, что в формулах (х)И(х) и (x)И(x) кванторы (х) и (х) относятся к переменному х или что переменное х связано соответствующим квантором.

Предметное переменное, не связанное никаким квантором, мы будем называть свободным переменным . Таким образом, мы описали все формулы логики предикатов.

Если две формулы И и В, отнесенные к некоторому полю М, при всех замещениях переменных предикатов, переменных высказываний и свободных предметных переменных соответственно индивидуальными предикатами, определенными на М, индивидуальными высказываниями и индивидуальными предметами из М, принимают одинаковые значения И или Л, то мы будем говорить, что эти формулы равносильны на поле М. (При замещениях переменных предикатов, высказываний и предметов мы, конечно, те из них, которые в формулах И и В обозначены одинаковым образом, замещаем также одинаковым образом).

Если две формулы равносильны на любых полях М, то мы будем их называть просто равносильными. Равносильные формулы могут быть замещаемы одна другой.

Равносильность формул позволяет приводить их в разных случаях к более удобному виду.

В частности, имеет место: И→ В равносильно И В.

Пользуясь этим, мы можем для любой формулы найти равносильную, в которой из операций алгебры высказываний имеются только &, и -.

Пример: (x)(А(х)→(у)В(у)) равносильна (x)(А(х)(у)В(у)).

Кроме того, для логики предикатов имеются равносильности, связанные с кванторами.

Существует закон, связывающий кванторы со знаком отрицания. Рассмотрим выражение (х)И(х).

Высказывание «(х)И(х) ложно», равносильно высказыванию: «существует элемент у, для которого И(у) ложно» или, что то же, «существует элемент у, для которого И(у) истинно». Следовательно, выражение (х)И(х) равносильно выражению (у)И(у).

Рассмотрим таким же образом выражение (х)И(х).

Это есть высказывание «(х)И(х) ложно». Но такое высказывание равносильно высказыванию: «для всех у И(у) ложно» или «для всех у И(у) истинно». Итак, (х)И(х) равносильно выражению (у)И(у).

Мы получили, таким образом, следующее правило:

Знак отрицания можно ввести под знак квантора, заменив квантор на двойственный.

Мы уже видели, что для каждой формулы существует равносильная ей формула, которая из операций алгебры высказываний содержит только &, и -.

Пользуясь равносильностями для каждой формулы можно найти равносильную, в которой знаки отрицания относятся к элементарным высказываниям и элементарным предикатам.

Для аксиоматического описания логики предикатов предназначено исчисление предикатов.

Исчисление предикатов - некоторая аксиоматическая система, предназначенная для моделирования некоторой среды и проверки каких-либо гипотез относительно свойств этой среды при помощи разработанной модели. Гипотезы при этом утверждают наличие или отсутствие некоторых свойств у некоторых объектов и выражаются в виде логической формулы. Обоснование гипотезы сводится, таким образом, к оценке выводимости и выполнимости логической формулы.

В любом национальном языке употребляемые в обычной речи связки “и”, “или”, “если …, то …”, “тогда и только тогда, когда …” и т.п. позволяют из уже заданных высказываний строить новые сложные высказывания. Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями . Логическая операция полностью может быть описана таблицей истинности , указывающей, какие значения принимает сложное высказывание при всех возможных значениях простых высказываний.

Логической операцией называется способ построения сложного высказывания из элементарных высказываний, при котором истинностное значение сложного высказывания полностью определяется истинностными значениями исходных высказываний (см. статью “”).

В алгебре логики логические операции и соответствующие им логические связки имеют специальные названия и обозначаются следующим образом:

Конъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны 7 . Логическая операция конъюнкция

Рассмотрим два высказывания: p = “Завтра будет мороз ” и q = “Завтра будет идти снег ”. Очевидно, новое высказывание p & q = “Завтра будет мороз, и завтра будет идти снег ” истинно только в том случае, когда одновременно истинны высказывания p и q , а именно, что завтра будет и мороз и снег. Высказывание p & q будет ложно во всех остальных случаях: будет идти снег, но будет оттепель (т.е. не будет мороза); мороз будет, а снег не будет идти; не будет мороза, и снег не будет идти.

Дизъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны, и истинным, когда хотя бы одно из двух образующих его высказываний истинно 8 . Логическая операция дизъюнкция определяется следующей таблицей истинности:

Рассмотрим два высказывания: p = “Колумб был в Индии ” и q = “Колумб был в Египте p q = “Колумб был в Индии или был в Египте ” истинно как в случае, если Колумб был в Индии, но не был в Египте, так и в случае, если он не был в Индии, но был в Египте, а также в случае, если он был и в Индии, и в Египте. Но это высказывание будет ложно, если Колумб не был ни в Индии, ни в Египте.

Союз “или” может применяться в речи и в другом, “исключающем” смысле. Тогда он соответствует другому высказыванию - разделительной, или строгой, дизъюнкции.

Строгая , или разделительная , дизъюнкция - логическая операция, ставящая в соответствие двум элементарным высказываниям новое высказывание, являющееся истинным только тогда, когда только одно из высказываний является истинным. Логическая операция разделительная дизъюнкция определяется следующей таблицей истинности:

Рассмотрим два высказывания: p = “Кошка охотится за мышами ” и q = “Кошка спит на диване ”. Очевидно, что новое высказывание p q истинно только в двух случаях - когда кошка охотится за мышами либо когда кошка мирно спит. Это высказывание будет ложно, если кошка не делает ни того, ни другого, т.е. когда оба события не происходят. Но это высказывание будет ложным и тогда, когда предполагается, что оба высказывания произойдут одновременно. В силу того, что этого произойти не может, высказывание и является ложным.

В логике связкам “либо” и “или” придается разное значение, однако в русском языке связку “или” иногда употребляют вместо связки “либо”. В этих случаях однозначность определения используемой логической операции связана с анализом содержания высказывания. Например, анализ высказывания “Петя сидит на трибуне А либо на трибуне Б ” заменить на “Петя сидит на трибуне А или Б ”, то анализ последнего высказывания однозначно укажет на логическую операцию разделительная дизъюнкция , т.к. человек не может находиться в двух разных местах одновременно.

Импликация - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда условие (посылка) - истинно, а следствие (заключение) - ложно. Подавляющее число зависимостей между событиями можно описать с помощью импликации. Например, высказыванием “Если на каникулах мы поедем в Петербург, то посетим Исаакиевский собор” мы утверждаем, что в случае приезда на каникулах в Петербург Исаакиевский собор мы посетим обязательно.

Логическая операция импликация

Импликация будет ложной только тогда, когда посылка истинна, а заключение ложно, и она заведомо будет истинна, если ее условие p ложно. Причем для математика это вполне естественно. В самом деле, исходя из ложной посылки, можно путем верных рассуждений получить как истинное, так и ложное утверждение.

Допустим, 1 = 2, тогда и 2 = 1. Складывая эти равенства, мы получим 3 = 3, т.е. из ложной посылки путем тождественных преобразований мы получили истинное высказывание.

Импликация, образованная из высказываний А и В , может быть записана при помощи следующих предложений: “Если А , то В ”, “Из А следует В ”, “А влечет В ”, “Для того чтобы А , необходимо, чтобы В ”, “Для того чтобы В , достаточно, чтобы А ”.

Эквивалентность - логическая операция, ставящая в соответствие двум элементарным высказываниям новое, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны. Логическая операция эквивалентность задается следующей таблицей истинности:

Рассмотрим возможные значения сложного высказывания, являющегося эквивалентностью: “Учитель поставит ученику 5 в четверти тогда и только тогда, когда ученик получит 5 на зачете” .

1) Ученик получил 5 на зачете и 5 в четверти, т.е. учитель выполнил свое обещание, следовательно, высказывание является истинным.

2) Ученик не получил на зачете 5, и учитель не поставил ему 5 в четверти, т.е. учитель свое обещание сдержал, высказывание является истинным.

3) Ученик не получил на зачете 5, но учитель поставил ему 5 в четверти, т.е. учитель свое обещание не сдержал, высказывание является ложным.

4) Ученик получил на зачете 5, но учитель не поставил ему 5 в четверти, т.е. учитель свое обещание не сдержал, высказывание является ложным.

Отметим, что в математических теоремах эквивалентность выражается связкой “необходимо и достаточно”.

Рассмотренные выше операции были двухместными (бинарными), т.е. выполнялись над двумя операндами (высказываниями). В алгебре логики определена и широко применяется и одноместная (унарная) операция отрицание .

Отрицание - логическая операция, которая каждому элементарному высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. Логическая операция отрицание задается следующей таблицей истинности:

В русском языке для построения отрицания используется связка “неверно, что …”. Хотя связка “неверно, что …” и не связывает двух каких-либо высказываний в одно, она трактуется логиками как логическая операция, поскольку, поставленная перед произвольным высказыванием, образует из него новое.

Отрицанием высказывания “У меня дома есть компьютер” будет высказывание “Неверно, что у меня дома есть компьютер” или, что в русском языке то же самое, “У меня дома нет компьютера” . Отрицанием высказывания “Я не знаю китайского языка” будет высказывание “Неверно, что я не знаю китайского языка” или, что в русском языке одно и то же, “Я знаю китайский язык” .

Кванторы

В математической логике наряду с логическими операциями используются и кванторы. Квантор (от лат. quantum - сколько) - логическая операция, дающая количественную характеристику области предметов, к которой относится выражение, получаемое в результате ее применения.

В обычном языке носителями таких характеристик служат слова типа все , каждый , некоторый , любой , всякий , бесконечно много , существует , имеется , единственный , несколько , конечное число , а также все количественные числительные. В формализованных языках, составной частью которых является исчисление предикатов, для выражения всех подобных характеристик оказывается достаточным кванторов двух видов: квантора общности и квантора существования .

Кванторы позволяют из конкретной высказывательной формы (см. “Высказывания. Логические значения ”) получить высказывательную форму с меньшим числом параметров, в частности, из одноместной высказывательной формы получить высказывание 9 .

Квантор общности позволяет из данной высказывательной формы с единственной свободной переменной x получить высказывание с помощью связки “Для всех x …”. Результат применения квантора общности к высказывательной форме A(x ) обозначают x A(x ). Высказывание x A(x ) будет истинным тогда и только тогда, когда при подстановке в A(x ) вместо свободной переменной x любого объекта из области возможных значений всегда получается истинное высказывание. Высказывание x A(x ) может читаться следующим образом: “Для любого x имеет место A(x )”, “A(x ) при произвольном x ”, “Для всех x верно A(x )”, “Каждый x обладает свойством A(x )” и т.п.

Квантор существования позволяет из данной высказывательной формы с единственной свободной переменной x получить высказывание с помощью связки “Существует такой x , что …”. Результат применения квантора общности к высказывательной форме A(x ) обозначают x A(x ). Высказывание
x A(x ) истинно тогда и только тогда, когда в области возможных значений переменной x найдется такой объект, что при подстановке его имени вместо вхождения свободной переменной x в A(x ) получается истинной высказывание. Высказывание x A(x ) может читаться следующим образом: “Для некоторого x имеет место A(x )”, “Для подходящего x верно A(x )”, “Существует x , для которого A(x )”, “Хотя бы для одного x верно A(x )” и т.п.

Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка так называемые “количественные” (“кванторные”) слова, - определяют область применимости данного высказывания (или высказывательной формы).

При построении отрицания к высказыванию, содержащему квантор, действует следующее правило: частица “не” добавляется к сказуемому, квантор общности заменяется на квантор единственности и наоборот. Рассмотрим пример. Отрицанием высказывания “Все юноши 11-х классов - отличники” является высказывание “Неверно, что все юноши 11-х классов - отличники” или “Некоторые юноши 11-х классов - не отличники”.

В информатике кванторы применяются в логических языках программирования (см. “Языки программирования ”) и языках запросов к базам данных.

Умение строить сложные высказывания требуется при работе с базами данных, при конструировании запроса поиска в Интернете, при построении алгоритмов и написании программ на любом алгоритмическом языке. Более того, это умение можно отнести к общешкольным умениям, т.к. оно связано с построением сложных умозаключений (рассуждений, получений выводов). В основе этого умения лежат знание основных логических операций и умение определять истинность сложных высказываний.

С логическими операциями дизъюнкция, конъюнкция и отрицание школьники знакомятся в основной школе. Там же вводится и понятие таблицы истинности. Скорее всего знакомство с данными понятиями возникает в языках программирования, но использовать их можно и в электронных таблицах - там логические операции реализованы через соответствующие функции OR, AND, NOT.

Более сложные логические операции могут быть рассмотрены в старшей школе. Задачи, использующие импликацию, встречаются в каждом из опубликованных вариантов ЕГЭ по информатике. Например: для какого числа X истинно высказывание ((X > 3) (X < 3)) –> (X < 1)? (Демоверсия ЕГЭ, 2007 г. )

При изучении операции импликации следует обратить внимание учащихся на тот факт, что большинство математических теорем являются импликациями. Однако те импликации, в которых посылки (условия) и заключения (следствиями) являются предложениями без взаимной (по существу) связи, не могут играть в науке более или менее важной роли. Они являются совершенно бесплодными предложениями, т.к. не ведут к выводам более глубокого содержания. Действительно, в математике ни одна теорема не является импликацией, в которой условие и заключение не были бы связаны по содержанию. Помимо связки “если, … то …”, в математических теоремах импликациями являются формулировки только необходимого или только достаточного условия.

Задания на построение достаточных и необходимых условий для школьников оказываются непростыми. При формировании этого умения необходимо особо отметить три момента:

а) используемая в математических утверждениях форма “необходимо и достаточно” соответствует связке “тогда и только тогда” (эквивалентность);

б) связка “для того чтобы …(A ), необходимо, чтобы …(B )” реализуется прямой импликацией A B . (Для того чтобы квадратное уравнение имело решение, необходимо, чтобы дискриминант был неотрицательным );

в) достаточное условие реализуется обратной импликацией B ® A и может на русском языке выражаться, например, так: “для того чтобы... (А), достаточно, чтобы... (В)”.

В старшей школе (10–11-е классы) у учащихся полезно сформировать умение строить отрицание к высказыванию на русском языке. Это умение необходимо, например, для доказательства теорем методом “от противного”. Строить отрицание даже к простым высказываниям не всегда просто. Например, к высказыванию На стоянке стоят красные Жигули ” следующие предложения отрицаниями являться не будут:

1) На стоянке стоят не красные Жигули ”;

2) На стоянке стоит белый Мерседес ”;

3) Красные Жигули стоят не на стоянке .

Отрицанием к этому высказыванию будет “На стоянке не стоят красные “Жигули”. Объяснить школьникам это можно так: отрицание к предложению должно полностью исключать истинность исходного высказывания. Если же на стоянке стоит белый “Мерседес”, то ничто не мешает красным “Жигулям” стоять тоже.

Об алгоритме построения отрицания к сложному высказыванию можно прочитать в книге Е.Андреевой, Л.Босовой, И.Фалиной “Математические основы информатики”.

Изучение кванторов до настоящего времени не было традиционным для школьного курса информатики. Однако теперь они входят в стандарт профильной школы. Проще всего продемонстрировать роль кванторов при построении все тех же отрицаний к высказываниям на русском языке, причем как к математическим, так и произвольным. Правило замены квантора общности на квантор существования и наоборот легко обосновать с помощью законов де Моргана (см. “Логические выражения” ).

6 От латинских слов idem - тот же самый и potens - сильный; дословно - равносильный.

7 Это определение легко распространяется на случай n высказываний (n > 2, n - натуральное число).

8 Это определение, как и предыдущее, распространяется на случай n высказываний (n > 2, n - натуральное число).

9 Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс математической логики. М.: Физматлит, 2002.

Оператор, с помощью которого о к.-л. отдельном объекте преобразуется в высказывание о совокупности (множестве) таких объектов.
В логике используется два основных К.: К. общности, «V», и К. существования, «Э». В естественном языке отдаленными смысловыми аналогами К. общности являются слова «все», «любой», «каждый»; смысловыми аналогами К. существования - слова «некоторые», «существует». С помощью данных К. любое атрибутивное высказывание вида Р(х) о том, что объекту х присуще Р, может быть преобразовано в соответствующее кванторное высказывание вида VхР(х) и вида ЗхР(х). Содержательно сама кванторная формула «VxP(x)» читается как «для всех х имеет Р(х)», а формула «ЭхР(х)» - как «для некоторых х имеет место Р(х)». Высказывание вида VxP(x) истинно, если любой х обладает свойством Р; и ложно, если хотя бы один х не обладает свойством Р. Аналогичным образом, высказывание вида ЗхР(х) истинно, если хотя бы один х обладает свойством Р; и ложно, если ни один х не обладает свойством Р.
На основе элементарных кванторных формул «VxP(x)», «ЭхР(х)» могут быть построены др., более сложные кванторные формулы. Логические взаимосвязи между такими формулами изучаются в логике предикатов. В частности, формула «ЗхР(х)» логически эквивалентна формуле «) VxКВАНТОР| P(x)», а формула «VхР(х)» эквивалентна формуле «) Эх) Р(х)», где «)» - отрицания.
В неявной форме К. использовались уже Аристотелем, однако в строгом содержательном и формальном смысле они впервые были введены в логику Г. Фреге.

Философия: Энциклопедический словарь. - М.: Гардарики . Под редакцией А.А. Ивина . 2004 .

(от лат. quantum - сколько) , оператор логики предикатов, применение крого к формулам, содержащим лишь одну свободную переменную, даёт (высказывание) . Различают К. общности, обозначаемый символом (от англ. all - все) , и К. существования (от exist - существовать) : хР(х) интерпретируется (см. Интерпретация) как «для всех х имеет место свойство Р», а хР(х) - как «существует х такой, что имеет место свойство?(х) ». Если (универсум) конечна, то хР(х) равносильно конъюнкции всех формул Р(а) , где а - элемент предметной области. Аналогично, хР(х) равносильно дизъюнкции всех формул вида? (а) . Если же предметная область бесконечна, то xP(x) и хР(х) могут быть истолкованы соответственно как бесконечные и дизъюнкция. Введение К. в логике многоместных предикатов (т. е. неодноместных) обусловливает неразрешимость исчисления предикатов. Различные соотношения между К. общности и существования и логическими связками логики высказываний формализуются в исчислении предикатов.

Философский энциклопедический словарь. - М.: Советская энциклопедия . Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов . 1983 .

(от лат. quantum - сколько) - логич. оператор, применяемый к логич. выражениям и дающий количеств. характеристику области предметов (а иногда и области предикатов), к к-рой относится получаемое в результате применения К. . В то как логич. средств логики высказываний недостаточно для выражения форм всеобщих, частных и единичных суждений, в логике предикатов, получаемой посредством расширения логики высказываний за счет введения К., такие суждения выразимы. Так, напр., четыре осн. формы суждений традиц. логики "Все А суть В", "Ни одно А не есть В", "Нек-рые А суть В" и "Нек-рые А не суть В" могут быть записаны (если отвлечься от предполагаемого аристотелевой логикой требования непустоты А в общих суждениях) при помощи поясняемой ниже символики следующим образом: ∀(х) (А (х) ⊃ В (х)), ∀(х) (А (х) ⊃ В(x)), ∃(х) (А (х) & В (х)) и ∃ (х) (А (х) & B (x)). Введение К. дает записывать на формализованном логич. языке выражения естеств. языка, содержащие количест. характеристики к.-л. предметных или предикатных областей. В естеств. языках носителями таких характеристик являются т. н. кванторные слова, к числу к-рых относятся, в частности, количеств. числительные, местоимения "все", "каждый", "нек-рый", глагол "существует", прилагательные "любой", "всякий", "единственный", наречия "бесконечно много" и т.п. Оказывается, что для выражения всех упомянутых кванторных слов в формализ. языках и логич. исчислениях достаточно двух наиболее употребит. К.: К. общности (или в с е о б щ н о с т и), обозначаемого обычно символом ∀(перевернутая буква А – начальная буква англ. слова "all", нем. "alle" и др.), и К. с у щ е с т в о в а н и я, обозначаемого обычно символом ∃ (перевернутая буква E – начальная буква англ. слова "exist", нем. "existieren" и др.); за знаками ∀ и ∃ в обозначении К. следует буква нек-рого алфавита, называемая кванторной переменной, к-рую рассматривают обычно как часть обозначения К.: ∀х, ∀у, ∀F, ∃х, ∃α и т.п. Для К. общности употребляют также обозначения:

для К. существования:

Знак К. ставится перед выражением, к к-рому применяется К. (операцию применения К. часто называют квантификацией); это выражение заключается в скобки (к-рые часто опускают, если это не приводит к двусмысленности). Содержащее К. общности выражение ∀x (А (х)) читается как "Для всех x верно, что А (х)", или "Для каждого x верно А (х)"; содержащее К. существования выражение ∃х (А(х)) читается как "Существует x такой, что А (х)", или "Для нек-рого x верно А(х)". В обоих этих случаях не предполагается, вообще говоря, что выражение A (х) в действительности зависит от переменной x ( может и вообще не содержать никаких переменных, т.е. может обозначать нек-рое высказывание; в этом случае не меняет смысла этого высказывания). Однако осн. назначение К. - высказываний из выражения, зависящего от кванторной переменной, или хотя бы уменьшение числа переменных, от к-рых это выражение, будучи незамкнутой (открытой) формулой (см. Замкнутая формула), зависит. Напр., выражение (y>0&z>0&x=у-z) содержит три переменные (х, y и z) и становится высказыванием (истинным или ложным) при к.-л. опред. замещении этих переменных именами нек-рых предметов из области их значений. Выражение ∃ z(y>0&z>0&x = y-z) зависит уже лишь от двух переменных (х и у), a ∃y∃z (y>0&z>0& &х = у –z) - от одной х. Последняя формула выражает, т.о., нек-рое свойство (одноместный ). Наконец, формула ∃х∃у∃z (y>0&z>0&x=y–z) выражает вполне опред. высказывание.

Др. примеры формул, содержащих К.: 1) ∀х(х>0); 2) ∃х(х>0); 3) ∀х (2+2=5); 4) ∃x (2+2=4); 5) ∀х (х = х)& (х+2=у); 6) ∀х∃у (∀z (x = z⊃x ≠ 0) & (x действие к.-л. К., наз. областью действия этого К. Так, в формуле 6) областями действия К. ∀х и ∃y являются стоящие справа от них части формулы, а область действия К. ∀z - формула (x = z⊃x ≠ 0). Вхождение к.-л. переменной в знак К. или в область действия К., содержащего эту переменную, наз. связанным вхождением переменной в формулу. В остальных случаях вхождение переменной наз. с в о б о д н ы м. Одна и та же может входить в к.-л. формулу в одном месте в связанном виде, а в др. месте – в свободном. Такова, напр., формула 5): первые три (считая слева) вхождения в нее переменной x – связанные, последнее же – свободное. Иногда говорят, что переменная связана в данной формуле, если все ее вхождения в эту формулу – связанные. В математике и логике всякое выражение, содержащее свободную переменную, может рассматриваться (при неформальном подходе) как ее в том обычном смысле этого слова, что оно (выражение) зависит от различных значений этой переменной; придавая этой переменной различные значения (т. е. замещая все ее свободные вхождения именем к.-л. предмета, принадлежащего к области значений этой переменной), мы получаем различные (вообще говоря) значения данного выражения, зависящие от значения переменной, т.е. от подставленной вместо нее константы. Что же касается связанных переменных, то заключающие их выражения в действительности от них не зависят. Напр., выражение ∃х(х = 2у), зависящее от у (входящего в него свободно), эквивалентно выражениям ∃z(z = 2y), ∃u(u = 2у) и т.п. Эта логич. выражений от входящих в них связанных переменных находит в т. н. правиле переименования с в я з а н н ы х п е р е м е н н ы х, постулируемом или выводимом в разл. логич. исчислениях (см. Переменная , Предикатов исчисление).

Изложенное выше истолкование смысла К. относилось к с о д е р ж а т е л ь н ы м логич. теориям. Что же касается исчислений в собств. смысле (т.н. формальных систем), то в них вообще не имеет смысла говорить о "значении" того или иного К., являющегося здесь просто нек-рым символом исчисления. Вопрос о значении (смысле) К. относится целиком к области интерпретации исчисления. В применении к К. можно говорить по крайней мере о трех интерпретациях: классической, интуиционистской и конструктивной, соответствующих различным концепциям существования и всеобщности в логике и математике (см. Интуиционизм , Конструктивная логика). Как в классич., так и в интуиционистском (конструктивном) исчислении предикатов способы вывода в случаях, когда исходные или доказываемые формулы содержат К., описываются одними и теми же т. н. постулатами квантификации, напр. постулатами Бернайса.

К. общности и существования не исчерпываются употребительные в логике виды К. Обширный К. представляют собой т. н. ограниченные К. вида ∀хP(x)А(х) или ∃xQ(x)A(x), в к-рых область изменения кванторной переменной x "ограничена" нек-рым спец. предикатом Р(х) (или Q(x)). Ограниченные К. сводятся к К. общности и существования при помощи след. эквивалентностей: ∀xP(x)A(x) КВАНТОР∀x(P(x) ⊃A(x)) и ∃xQ(x)A(x) КВАНТОР ∃x(Q(x)&A(x)). Часто употребляемый К. единственности ∃!хА(х) ("существует единственное x такое, что А(х)") также выражается через К. общности и существования, напр. так: xA(x) КВАНТОР ∃xA(x)& ∀y∀z(A(y)&A(z)⊃y=z).

Употребительны и др. виды К., не покрываемые понятием ограниченного К. Таковы "числовые" К. вида ∃хnА(х) ("существует в точности n различных x таких, что А(х)"), употребляемый в интуиционистской логике К. "квазисуществования" ∃ хА(х), или ("неверно, что не существует такого х, что А(х)"); с т. зр. классич. логики К. "квазисуществования" ничем не отличается от К. существования, в интуиционистской же логике предложение ∃xA(x), ничего не говорящее о существовании алгоритма для нахождения такого х, что А(х), действительно утверждает лишь "квази" такого x и К. бесконечности ∃x∞A(x) ("существует бесконечно много таких х, что А(х)"). Выражения, содержащие К. бесконечности и числовые К., также могут быть записаны при помощи К. общности и существования. В расширенном исчислении предикатов К. берутся не только по предметным, но и по предикатным переменным, т.е. рассматриваются формулы вида ∃F∀xF(x), ∀Ф∃у(Ф(y)) и т.п.

Лит.: Гильберт Д. и Аккерман В., Основы теоретической логики, пер. с англ., М., 1947, с. 81-108; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948, о. 36-42, 100-102, 120-23; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, с. 72-80, 130-38; Чёрч Α., Введение в математическую логику, пер. с англ., т. 1, с. 42–48; Кузнецов А. В., Логические контуры алгоритма, перевода со стандартизованного русского языка на информационно-логический, в сб.: Тезисы докладов на конференции по обработке информации, машинному переводу и автоматическому чтению текста, М., 1961; Mostowski A., On a generalization of quantifiers, "Fundam. math.", 1957, t. 44, No 1, p. 12–36; Hailperin T., A theory of restricted quantification, I–II, "J. Symb. Logic", 1957, v. 22, No 1, p. 19–35, No 2, p. 113–29.

Ю. Гастев. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


Синонимы :

Смотреть что такое "КВАНТОР" в других словарях:

    Сущ., кол во синонимов: 1 оператор (24) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    квантор - — Тематики электросвязь, основные понятия EN quantifier … Справочник технического переводчика

    Квантор общее название для логических операций, ограничивающих область истинности какого либо предиката и создающих выcказывание. Чаще всего упоминают: Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…» … Википедия

    Общее название для логических операций, к рые по предикату Р(х)строят высказывание, характеризующее область истинности предиката Р(х). В математич. логике наиболее употребительны квантор всеобщности и квантор существования Высказывание означает,… … Математическая энциклопедия

    Квантор - (от лат. quantum сколько) символ, используемый для обозначения некоторых операций математической логики, одновременно логическая операция, дающая количественную характеристику области предметов, к которым относится выражение, получаемое в… … Начала современного естествознания

Кроме известных нам логических операций для предикатов вводятся две новые: операция навешивания кванторов существования и общности.


«для всех х » (для любого х , для каждого х ) называется квантором общности и обозначается х.


Высказывание «существует х » (для некоторых х , хотя бы для одного х, найдется такое х ) называется квантором существования и обозначается х.


Высказывание «существует одно и только одно х » (для единственного значения х ) называется квантором единственности : ! х.


Например: «Все кустарники являются растениями». Это высказывание содержит квантор общности («все»). Высказывание «существуют числа, кратные 5 » содержит квантор существования («существуют»).


Для того чтобы получить высказывание из многоместного предиката, надо связать кванторами каждую переменную. Например, если Р(х; у) - двухместный предикат, то (хХ) (уY) Р(х; у) - высказывание.


Если не каждая переменная связывается квантором, то получается не высказывание, а предикат, зависящий от той переменой, которая не связана квантором. Так, если перед предикатом Р(х; у) поставить квантор у, то получим предикат (уY) Р(х; у) , зависящий от переменной х.


Выясним, какие из следующих предложений являются высказываниями, а какие предикатами: а) найдется такое х, что х+ у = 2;


b) для любых х и у имеет место равенство х + у = у + х.


Решение : Выявим логическую структуру данных предложений.


а) Предложение «Найдется такое х, что х + у = 2 » можно записать в виде (хR) х + у = 2. Так как квантором связана только переменная х, то рассматриваемое предложение с двумя переменными является предикатом.


b) Предложение «для любых х и у имеет место х + у = у + х » можно записать в виде: (хR) (уR) х + у = у + х, где обе переменные являются связанными. Следовательно, данное предложение является высказыванием.


Если какое-либо предметное переменное в формуле не связано квантором, то его называют свободным переменным.


Например: (х) ху=ух. Здесь переменное у не связано каким-либо квантором, поэтому оно свободно. От него не зависит истинность данного высказывания.


Кванторы (х) (х ) называются двойственными друг другу.


Одноименные кванторы можно менять местами, что не влияет на истинность высказывания.


Например: (у) (х) х + у = 5. Это утверждение имеет тот же смысл, что и (х) (у) х + у = 5.


Для разноименных кванторов изменение порядка может привести к изменению истинности высказывания.


Например: (х) (у) х<у , т.е. для всякого числа х существует большее число у - истинное высказывание.


Поменяем местами кванторы: (х) (у) x cуществует число у большее любого числа х - ложное высказывание.


В связи с введением кванторов необходимо учесть следующее:


1. Формула логики предикатов не может содержать одно и то же предметное переменное, которое было бы связано в одной части формулы и свободно в другой.


2. Одно и то же переменное не может находиться в области двойственных друг другу кванторов.


Нарушение этих условий называют коллизией переменных .


Как устанавливается значение истинности высказывания с квантором?


Для доказательства утверждения с квантором общности необходимо убедиться в том, что при подстановке каждого из значений х в предикат Р(х) последний обращается в истинное высказывание. Если множество Х конечно, то это можно сделать путем перебора всех случаев; если же множество Х бесконечно, то необходимо провести рассуждения в общем виде.


Высказывание (х) Р(х) ложно, если можно указать такое значение а Х , при котором Р(х) обращается в ложное высказывание Р(а). Поэтому, для опровержения высказывания с квантором общности достаточно привести пример.


Высказывание (х) Р(х) истинно, если можно указать такое значение а Х , при котором Р(х) обращается в истинное высказывание Р(а) . Поэтому, чтобы убедиться в истинности высказывания с квантором существования , достаточно привести пример и таким образом доказать.


Для того чтобы убедиться в ложности высказывания с квантором существования (х) Р(х), необходимо убедиться в ложности каждого Р(х ), Р(х ), …, Р(х ). Если множество Х конечно, то это можно сделать перебором. Если же множество Х бесконечно, то необходимо провести рассуждения в общем виде.


Примеры .


1. Найти значение истинности «средичисел1, 2, 3, 4 найдется простое число».


Решение: Высказывание содержит квантор существования и поэтому может быть представлено в виде дизъюнкции высказываний: «1 - простое число» или «2 - простое число» или «3 - простое число» или «4 - простое число». Для доказательства истинности дизъюнкции достаточно истинности хотя бы одного высказывания, например, «3 - простое число», которое истинно. Следовательно, истинно и исходное высказывание.


2. Докажем, что любой квадрат является прямоугольником.


Решение: Высказывание содержит квантор общности. Поэтому оно может быть представлено в виде конъюнкции: «квадрат - прямоугольник» и «квадрат - прямоугольник» и «квадрат - прямоугольник» и т.д. Так как все эти высказывания истинны, то истинна конъюнкция этих высказываний, следовательно, истинно и исходное предложение.


3. «Любой треугольник равнобедренный». Это ложное высказывание. Чтобы убедиться в этом, достаточно начертить треугольник, не являющийся равнобедренным.а


Для построения отрицания высказывания с кванторами надо:


1) квантор общности заменить квантором существования, а квантор существования - квантором общности;


2) предикат заменить его отрицанием.


Пример. Сформулируем отрицание для следующих высказываний:


а) все элементы множества Z четные; b) некоторые глаголы отвечают на вопрос «что делать?».


Решение: а) Заменим квантор общности квантором существования, а высказывание его отрицанием: некоторые элементы множества Z нечетные.


b) Заменим квантор существования квантором общности, а выражение его отрицанием: все глаголы не отвечают на вопрос «что делать?».

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама