THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Среди первичных механизмов повреждения клеток при окислительном стрессе лидирует окисление жирнокислотных остатков в фосфолипидах мембран. Это снижает их гидрофобность и нарушает устойчивость мембран, изменяет работу мембраносвязанных ферментов, повышает проницаемость мембран для ионов.

Реакции взаимодействия свободных радикалов с жирными кислотами получили широкую известность в связи с их актуальностью в пищевой промышленности. Появление неприятного запаха и прогоркание продуктов – это является проявлением перекисного окисления липидов (ПОЛ).

Основным субстратом для свободно-радикальных реакций являются двойные связи полиненасыщенных жирных кислот. В клеточных мембранах полиненасыщенные жирные кислоты находятся в составе фосфолипидов и гликолипидов. Также большое количество фосфолипидов с полиненасыщенными жирными кислотами локализуется в оболочке липопротеинов высокой, низкой и очень низкой плотности, что имеет значение в патогенезе атеросклероза .

В результате свободнорадикального окисления жирных кислот образуются гидроперекиси и диеновые конъюгаты (первичные продукты), которые очень нестабильны. При участии металлов переменной валентности они быстро метаболизируют во вторичные (альдегиды и диальдегиды ) и третичные (шиффовы основания ) продукты перекисного окисления липидов.

Перекисное окисление липидов включает в себя несколько стадий:

  1. Инициация.
  2. Развитие.
  3. Разветвление.
  4. Обрыв цепи.

В момент инициации , например, гидроксил- радикалом атакуется метиленовая группа, расположенная между двойными связями, и выбивается атом водорода, восстанавливающий гидроксил-радикал до воды. Далее в жирной кислоте происходит перестановка двойной связи, смещение радикальной группы и взаимодействие ее с кислородом. В результате образуется липопероксильный радикал .

Дальнейшее взаимодействие полученного липопероксильного радикала с соседними жирными кислотами приводит к его нейтрализации и появлению новых липоперекисных радикалов, т.е. к развитию линейной цепной реакции с появлением новых окисленных жирных кислот.

Развитие реакций перекисного окисления липидов

Кроме линейного развития, может происходить ветвление реакции за счет получения гидро перекисью электронов от каких-либо металлов или при воздействии излучения.

Разветвление и обрыв реакций перекисного окисления липидов

Обрыв цепной реакции происходит при взаимодействии радикалов друг с другом или в реакции с различными антиоксидантами, например, витамином Е, который отдаёт электроны, превращаясь при этом в довольно стабильную окисленную форму.

Продукты перекисного окисления липидов

Первичными продуктами ПОЛ являются гидроперекиси жирных кислот , они подвергаются дальнейшему распаду с образованием вторичных продуктов ПОЛ – различных спиртов, кетонов, альдегидов и диальдегидов, эпоксидов и других соединений.

Наиболее реакционноспособным из вторичных продуктов ПОЛ является малоновый диальдегид (МДА), который способен образовывать ковалентные связи с NH 2 -группами белков и иных молекул с образованием шиффовых оснований.

Схема реакций образования малонового диальдегида

Роль малонового диальдегида

(МДА), образующийся при перекисном окислении липидов, способен реагировать с ε-NH 2 -группами лизина или N-концевыми аминокислотами белков, с NH 2 -группами фосфолипидов и гликозаминов . МДА формирует мостики внутри молекул и между ними с образованием шиффовых оснований.

Болит все тело, мало кто задумывается о таких понятиях, как перекисное окисление липидов и окислительный стресс. Это слова из области физиологии, а мы не хотим изучать физиологию, мы хотим худеть, приводить в тонус или наращивать мышцы и поменьше сталкиваться с негативными последствиями. Тем не менее, если понять, какие процессы происходят в организме, становится ясно, какие меры принимать, чтобы не было мучительно больно.

Механизмы окислительного стресса: почему так больно после тренировок?

Когда мы выполняем физическую работу, клеткам нужно больше энергии. Основной метод её получения для клеток – окисление глюкозы в присутствии кислорода. Под нагрузкой потребность в живительном газе возрастает, но тот объем, который может быть разнесен по телу, ограничен: количеством вдыхаемого воздуха, мощностью , её способностью перегнать определенное количество крови, состоянием кровеносных , которые могут быть повреждены или забиты (атеросклероз).

Во время интенсивной тренировки организм переживает состояние гипоксии – недостатка кислорода. Ферменты, участвующие в дыхательной цепи клетки, при понижении концентрации кислорода переводят его в так называемые активные формы (АФК) с неспаренным электроном, которые в широких массах известны как свободные радикалы в организме.

Эти атомы способны взаимодействовать с жирами (фосфолипидами) клеточной оболочки, как бы ударяя их тем самым электроном и, в свою, очередь, превращая в переокиси – еще один вид свободных радикалов. Те делятся электроном с соседями, и изменение структуры затрагивает все больше и больше молекул мембраны, перекидываясь и на соседние клетки. Это и есть перекисное окисление липидов и окислительный стресс – цепная реакция, нарушающая структуру клеточных оболочек.

Почему перекисное окисление липидов несет негативные последствия?

Самое неприятное с точки зрения физиологии спорта последствие перекисного окисления липидов – упомянутое нарушение мембран. Они становятся более проницаемыми, а это порождает:

  1. Отток питательных веществ из клеток, а значит, поврежденные мышечные волокна лишатся стройматериала для своего ремонта. В местах концентрации возникают воспалительные реакции, сопровождающиеся концентрацией жидкости, а следовательно, сдавливанием нервных окончаний и болью. Кроме того, в целом замедляется после тренировки.
  2. Затруднение передачи нервных импульсов (большую роль в этом играет кальций, а его концентрации в клетке и вне её нарушаются), а с ними – сократимость мышцы. Нарушается нейромышечная связь, способность развивать максимальное усилие, что снижает спортивные результаты.
  3. Повреждение мембран не только клеток, но и их внутренних органелл, в том числе, митохондрий – энергетических субстанций клетки. Они могут усвоить меньше кислорода, что ведет к усугублению гипоксии и нарастанию процессов ПОЛ.

Как победить свободные радикалы в организме?

Чтобы предотвратить избыточное перекисное окисление липидов (в норме оно дает материал для синтеза простагландинов и тромбоксанов), необходимо:

  • нейтрализовать образующиеся свободные радикалы в организме,
  • увеличивать максимально возможный перенос кислорода, чтобы избежать гипоксии.

С первой задачей справляются антиоксиданты, например, один из самых мощных – . Вторая – комплексная, но для достижения каждой из тех целей, что она подразумевает, существуют натуральные средства:

  • для укрепления сердечной мышцы и перекачки наибольшего количества крови – ;
  • для увеличения количества гемоглобина в крови и переноса наибольшего количества кислорода – ;
  • для защиты мелких кровеносных сосудов от повреждений – ;
  • для прочищения сосудов от холестерина, очищения крови – , .

ПОЛ называют еще свободно – радикальным окислением липидов. Это окисление протекает в норме на низком следовом уровне (с малой скоростью) в мембранах митохондрий, лизосом, в оболочке эритроцитов, там где имеются ненасыщенные липиды (гл. обр. фосфолипиды).

Процессы ПОЛ играют определенную роль. Они участвуют:

    в регуляции проницаемости мембран;

    в обновлении клеточных мембран;

    в регуляции скорости роста организма;

    в пролиферации клеток.

Продуктами перекисного окисления ненасыщенных липидов являются:

    свободные радикалы – R;

    перекисные радикалы – ROO;

    гидроперекиси – ROOH; (98% на первых стадиях);

    альдегиды (малоновый диальдегид);

  • эпоксиды.

К образованию свободных радикалов и ускорению ПОЛ приводят:

    облучение ионизирующей радиацией;

    металлы переменной валентности (Fe, Cu);

    некоторые диазосоединения.

Продукты ПОЛ – реакционноспособные молекулы, которые спонтанно ускоряют цепные реакции перекисного окисления ненасыщенных липидов и реагируют с биомолекулами (белками, нуклеиновыми кислотами), вызывая нарушения их функций. Цепное перекисное окисление сопровождает слабая хемилюминесценция (сверхслабое свечение тканей).

Стабильный уровень ПОЛ, в нормальных физиологически необходимых пределах, обеспечивает антиоксидантная система защиты.

Антиоксиданты (антиокислители) уменьшают концентрацию свободных радикалов.

Антиоксиданты.

    Истинные антиоксиданты токоферольного типа (витамин Е, тироксин, селен).

    Антиоксиданты – комплексы: моно – ди – трикарбоновые кислоты (лимонная, никотиновая, аскорбиновая, бензойная).

    Ферментативные механизмы защиты:

глутатион – редуктаза: глутатион – дегидрогеназа, каталаза, супероксиддисмутаза.

Нервная ткань, легкие обладают наиболее высоким антиокислительным действием. Сердце, почки имеют среднее значение антиокислительной активности. Подкожный жир, мышцы, пожелудочная железа имеют низкую антиокислительную активность.

Антиокислительная активность большинства соединений определяется наличием у них подвижного атома Н с ослабленной связью «С». Происходит замена активных радикалов субстрата RОО. R’ на малоактивный радикал антиокислителя А. Этот радикал не способен к продолжению цепи и превращается в стабильные молекулярные продукты за счет полимеризации.

Глутатион – пероксидаза разрушает гидроперекиси жирных кислот с участием восстановленного глутатиона:

ROOH+2Г – SH R-OH+Г-S-S-Г+Н 2 О

Ферменты каталаза, пероксидаза обезвреживают уже образовавшиеся перекиси и прерывают дальнейшее разветвление.

Токоферолы способны встраиваться своими боковыми цепями между НЖК фосфолипидов мембран, образуя комплексы и увеличивая плотность упаковки мембран. Это препятствует проникновению кислорода и образованию перекисных радикалов. Существует системность ингибирования ПОЛ. Срыв происходит хотя бы при выпадении одного из компоненров антиоксидантного комплекса. Срыв этой физиологической защитной системы, а значит усиление перекисного окисления наступает:

    При весеннем дефиците антиоксидантов, токоферола, аскорбиновой кислоты.

    При избытке калорийного питания. Нарушается равновесие между темпами биологического окисления и поступлением продуктов, что приводит к сбросу субстрата на свободно – радикальный путь окисления.

    Стресс. Приводит к падению антиоксидантной активности, так как происходит несоответствие между поступлением избытка субстрата (жирных кислот), также кислорода в ткани и их реальным расходом.

    Гиподинамия. Малая подвижность снижает ферментативное биологическое окисление, сопровождаемое утилизацией кислорода – усиливает свободно – радикальное окисление.

    Лучевой фон. Облучение ускоряет ПОЛ.

    Длительная терапия антибиотиками снижает ВИТ. С, РР.

Увеличение перекисного окисления липидов приводит к синдрому липидной периоксидации , для которого характерны:

    Поражение мембран.

    Поражение ферментов.

  1. Накопление полимеров.

Эти явления могут по-разному превалировать при различной патологии.

Перекисное окисление (автоокисление) липидов при контакте с кислородом не только приводит в негодность пищевые продукты (прогоркание), но и вызывает также повреждение тканей in vivo, способствуя развитию опухолевых заболеваний. Повреждающее действие инициируется свободными радикалами , возникающими в период образования перекисей жирных кислот, содержащих двойные связи, чередующиеся с метиленовыми мостиками (такое чередование имеется в природных полиненасыщенных жирных кислотах) (рис. 15.28). Перекисное окисление липидов является цепной реакцией, обеспечивающей расширенное воспроизводство свободных радикалов, которые инициируют дальнейшее распространение перекисного окисления. Весь процесс можно представить следующим образом.

1) Инициация: образование R из предшественника

2) Развитие реакции:

3) Терминация (прекращение реакции):

Поскольку гидроперекись ROOH выступает как предшественник в процессе инициации, перекисное окисление липидов является разветвленной цепной реакцией, потенциально способной вызвать значительное

Рис. 15.27. Долихол (-спирт).

Рис. 15.28. Перекисное окисление липидов. Реакция инициируется светом или ионами металлов. Малоновый диальдегид, образующийся только из жирных кислот с тремя и более двойными связями, используется как показатель перекисного окисления липидов вместе с этаном, образующимся в результате отщепления концевого двухуглеродного фрагмента о -жирных кислот, и пентаном, образующимся при опцеплении концевого пятиуглеродного фрагмента о -жирных кислот.

повреждения. Для регулирования процесса перекисного окисления жиров и человек, и природа используют антиоксиданты. В пищевые продукты с этой целью добавляют пропилгаллат, бутилированный гидроксианизол и бутилированный гидрокситолуол. К природным антиоксидантам относятся жирорастворимый витамин Е (токоферол), а также водорастворимые ураты и витамин С. -Каротин является антиоксидантом только при низких значениях Антиоксиданты распадаются на два класса: 1) превентивные антиоксиданты, снижающие скорость инициации цепной реакции, и 2) гасящие (прерывающие цепь) антиоксиданты, препятствующие развитию цепной реакции. К первым относятся каталаза и другие пероксидазы, разрушающие ROOH, и агенты, образующие хелатные комплексы с металлами -ДТП А (диэтилентриаминпентаацетат) и ЭДТА (этилендиаминтетраацетат). В качестве прерывающих цепь антиоксидантов часто выступают фенолы или ароматические амины. В условиях in vivo главными прерывающими цепь антиоксидантами являются супероксиддисмутаза (см. с. 126), которая в водной фазе улавливает супероксидные свободные радикалы а также витамин Е, улавливающий свободные радикалы ROO в липидной фазе, и, возможно, мочевая кислота.

Перекисное окисление in vivo катализируется также гемовыми соединениями и липокснгеназамн, нахолящимися в составе тромбоцитов, лейкоцитов и т.д.

Рис. 15.29. а-Токоферол.

Витамин E (а-токоферол)

Существует несколько природных токоферолов. Все они являются 6-гидроксихроманами или токолами с изопреноидными заместителями (рис. 15.29). а-Токоферол наиболее широко распространен и имеет наибольшую биологическую активность как витамин.

Витамин Е выполняет по крайней мере две метаболические функции. Во-первых, он служит наиболее сильнодействующим природным жирорастворимым антиоксидантом и, во-вторых, выполняет специфическую, хотя и не до конца понятную, роль в метаболизме селена.

Витамин Е, по всей видимости, является первым эшелоном защиты клеточных и субклеточных мембранных фосфолипидов от перекисного окисления. Фосфолипиды митохондрий, эндоплазматического ретикулума и плазматических мембран обладают специфическим сродством к а-токоферолу, поэтому витамин, по-видимому, концентрируется в составе этих мембран. Токоферолы действуют как антиоксиданты, прерывающие цепи окисления благодаря их способности переносить фенольный водород на пероксидный радикал (рис. 15.30). Феноксирадикал является резонансно-стабилизированной и относительно нереакционноспособной структурой, за исключением его взаимодействия с другими пероксидными радикалами. Таким образом, а-токоферол почти не вовлекается в процесс цепной реакции окисления; при окислении хроманового кольца и боковой цепи а-токоферола образуется продукт, не являющийся свободным радикалом (рис. 15.31). Этот продукт образует конъюгат с глюкуроновой кислотой и экскретируется с желчью. Антиоксидантное действие а-токоферола сохраняется при высоких концентрациях кислорода, поэтому неудивительно, что

Рис. 15.30. Гасящее цепную реакцию антиоксидантное действие токоферолов по отношению к перекисным радикалам

Рис. 15.31. Продукт окисления а-токоферола. Нумерация атомов позволяет сопоставить их положение в продукте и исходном соединении.

витамин накапливается в богатых липидами областях, контактирующих со средой, где поддерживается высокое парциальное давление кислорода, - в мембранах эритроцитов и клеток дыхательных путей.

Однако даже и в присутствии адекватного количества витамина Е происходит образование некоторого количества перекисей. Вторым эшелоном защиты мембран от разрушающего действия перекисей (см. с. 204) служит глутатионпероксидаза, в состав которой входит селен. Таким образом, действие витамина Е и селена состоит, по-видимому, в предохранении клеточных и субклеточных компонентов от повреждения перекисями, обеспечивая целостность органелл и препятствуя тем самым развитию патологических состояний при действии физических, химических или других стрессорных факторов.

Перекисное окисление липидов (ПОЛ) представляет собой жизненно необходимое звено метаболического обмена. Основная функция его заключается в обновлении липидов клеточных мембран.

У здорового человека процессы перекисного окисления липидов контролируются так называемой антиокислительной системой, которая регулирует скорость и активность фосфорилирования путем связывания провоцирующих факторов или нейтрализации достаточного количества перекисей, чтобы не допустить переизбыток конечных продуктов обмена. Усиление процесса окисления может стать отправной точкой в патофизиологических процессах значительного количества заболеваний. Этот процесс включает в себя стадии ферментативного и неферментативного аутоокисления.

Виды

Для модификации фосфолипидного бислоя клеточных мембран проходит ферментативное окисление. Кроме того, он участвует в образовании биологически активных веществ, метаболических реакциях. Неферментативное же окисление проявляет себя как разрушающий фактор в жизни клетки. Из-за образования большого количества свободных радикалов и накопления перекисей активность антиоксидантной системы снижается и, как следствие, наблюдается гибель клеток организма.

Цикл ПОЛ

Для начала перекисного окисления липидов необходимо наличие свободных радикалов кислорода, имеющих на крайнем энергетическом уровне один неспаренный электрон. После восстановления молекулы образуется супероксид кислорода, который реагирует с атомами водорода, превращаясь в перекись водорода. Для регулирования количества супероксидов внутри клетки существуют супероксиддисмутаза, образующая перекись водорода, а каталаза, пероксидаза нейтрализуют ее до воды. Если живой организм подвергся действию ионизирующего излучения, количество свободных гидроксильных радикалов резко увеличится. Кроме гидроксида кислорода и другие его активные формы могут выступать инициаторами запуска процесса перекисного окисления липидов.

Продукты перекисного окисления липидов либо утилизируются организмом, либо используются для синтеза простагландинов (веществ, участвующих в реакциях воспаления), тромбоксанов (входят в каскад тромбообразующих реакций), гормонов надпочечников.

Система контроля

В зависимости от базовой структуры мембраны клетки скорость, активность и количество получившихся продуктов окисления могут варьироваться. Так, например, активность перекисного окисления липидов выше там, где в составе клеточной стенки преобладают и медленнее, если основой КС является холестерин. Кроме того, фактором, регулирующим количество и скорость образования свободных кислородных радикалов, а также утилизацию перекисей, являются метаболические ферменты. Еще в реакции перекисного окисления липидов принимают участие вещества, влияющие на липидный состав мембраны клетки и его произвольное изменение в соответствии с потребностями организма. К ним относятся витамин Е и К, тироксин (гормон щитовидной железы), гидрокортизон, кортизон и альдостерон (по принципу обратной связи). Дестабилизируют клеточную стенку ионы металлов, витамины С и D.

Нарушение процесса

Метаболические продукты перекисного окисления липидов могут накапливаться в тканях и жидкостях организма, если антиоксидантная система не успевает утилизировать их с необходимой скоростью. Вследствие этого нарушается транспорт ионов через мембрану клетки, что опосредованно может влиять на ионный состав жидкой части крови, скорость поляризации и деполяризации мембран мышечных клеток (нарушать проводимость нервных импульсов, их сократимость, увеличивать рефрактерный период), способствовать выходу жидкости во внеклеточное пространство (отеки, сгущение крови, нарушение электролитного баланса). Кроме того, основные продукты перекисного окисления липидов, после ряда биохимических реакций, превращаются в альдегиды, кислоты и пр. Эти вещества оказывают токсическое влияние на организм, проявляющееся в снижении скорости синтеза ДНК, повышении проницаемости капилляров, повышении онкотического давления и, как следствие, сладж-синдроме.

Проявления в клинике

Превентивные меры

Практикующим специалистам необходимо помнить, что проведение диагностических и лечебных процедур может активировать механизм перекисного окисления липидов. Об этом следует предупредить пациента. К провоцирующим факторам относятся лучевая терапия (при онкологии), ультрафиолетовое облучение (при рахите, воспалительных заболеваниях пазух носа, антибактериальной обработке помещений), магнитные поля (МРТ, КТ, физиотерапия), сеансы в барокамере (при полиомиелите,

Профилактика и терапия

Персоналу, работающему в рентгенкабинетах, санитаркам и медсёстрам, специалистам по физиотерапии, альпинистам, людям с избыточным весом нужно употреблять в пищу продукты, содержащие естественные антиоксиданты: рыбу, подсолнечное или оливковое масло, зелень, яйца, зеленый чай.

Помимо изменения диеты, можно использовать лекарственные средства, которые связывают некоторые группы свободных радикалов или соединяются с металлами переменной валентности. Таким образом они замещают свободные молекулы активного кислорода, не давая им связываться с усилителями ПОЛ.

Диагностика

На нынешнем этапе развития лабораторных исследований мы имеем возможность обнаружить перекиси в составе биологических жидкостей организма человека. Для этого нужно провести Проще говоря, выявить перекисное окисление липидов. Значение этого диагностического теста не нуждается в объяснении. Ведь в основе значительного количества заболеваний лежит чрезмерная активность перекисного окисления липидов. Выявление этого состояния определяет тактику лечения.

С точки зрения нормальной физиологии перекисное окисление липидов необходимо для образования стероидных гормонов, цитокинов и тромбоксанов. Но когда количество продуктов обмена данных химических реакций превышает допустимое значение и перекиси повреждают органеллы клетки, нарушают синтез ДНК и белков, в действие вступает антиоксидантная система, снижающая количество свободных радикалов кислорода, ионов металлов с изменчивой валентностью. Кроме этого, она повышает синтез каталазы и пероксидазы с целью утилизации излишков перекисей и продуктов их дальнейшего метаболизма.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама